Winogradsky column lab page!

Welcome to the Winogradsky column lab page! Students from the Departments of Biological Applications and Technology, University of Ioannina and Icthyology and Aquatic Environment, University of Thessaly, Greece and the Microbiology course, Faculty of Sciences, University of Cádiz, Spain, discuss their findings on Winogradsky columns they constructed!

If you want to add a post, please feel free to contact the blog administrators (Hera Karayanni, Sokratis Papaspyrou or Kostas Kormas)!

Καλωσορίσατε στη σελίδα των Winobloggers! Διαδικτυακός τόπος συνάντησης φοιτητών, φοιτητριών και διδασκόντων δύο Τμημάτων από την Ελλάδα: Tμήμα Βιολογικών Εφαρμογών και Τεχνολογιών, Παν/μιο Ιωαννίνων και Τμήμα Γεωπονίας, Ιχθυολογίας και Υδάτινου Περιβάλλοντος, Παν/μιο Θεσσαλίας και ενός από την Ισπανία: Σχολή Θετικών Επιστημών, Πανεπιστήμιο του Cadiz. Παρακολουθούμε, σχολιάζουμε, ρωτάμε, απαντάμε σχετικά με τα πειράματά μας, τις στήλες Winogradsky!

Bienvenidos a la pagina web de los Winobloggers! Aquí los estudiantes y profesores de dos departamentos griegos, el Departamento de Aplicaciones y Tecnologías Biológicas de la Universidad de Ioannina y el Departmento de Agricultura, Ictiología y Sistemas Acuáticos de la Universidad de Thessalia, junto con los estudiantes de Microbiología de la Facultad de Ciencias en la Universidad de Cádiz, se reúnen para observar, comentar, preguntar y responder a preguntas relacionadas con nuestro experimento, la columna Winogradsky.

Winogradksy columns

Winogradksy columns
'In the field of observation, chance only favors the prepared mind' Pasteur 1854

Blog posts

Wednesday, 7 June 2017


1st Week We can observe the first changes in the column, which is divided in two regions. In the upper one ( contains oxygen ) some algaes and cyanobacterias. Both ones are photoautotrophs oxygenic organisms so they only can grow in this region.
In the lower part we can see a huge amount of black precipitate. As a result of cellulose degradation, Clostridium generates throughout glucose fermentation ( anaerobic process ) somo organic compounds than can be use by sulphide-reducing bacterias such as Desulfovibrio. The product of anaerobic respiration (that uses sulphate as electron acceptor ), H2S reacts with iron contained in the mud producing FeS ( black precipitate ).
We can also notice some red/orange microorganisms. They are purple non-sulphide bacterias ( Rhodomicrobium ) which are anaerobic photoheterotrophs organisms that present low H2S tolerance so they appear on the higher level of anaerobic region because there is less sulphide concentration.


2nd Week The column doesn't undergo big changes. We can see a bigger amount of FeS consequence of anaerobic microorganisms activity and some algae have appeared in the surface of the column .
3rd / 4th Weeks As expected, the number of microorganisms has increased as well we can see three main changes. In the water of the top region we can notice some oxygen bubbles due to aerobic photoautotrophs organisms as algae.
In the anaerobic region, under Rhodomicrobium, we can see white spots consisting of S (elementary sulfur) .These spots present some purple sulphide bacterias named Chromatium ( anaerobic photosynthetic bacterias ) that use H2S as electron donor instead of water.
The cloud water of the top is due to chemotrophs sulfur-oxidising bacterias activity such as Thiobacillus .

1 comment:

  1. Nice column!

    Given that you have green microalgae growing on the sediment surface producing oxygen, I doubt that any H2S escapes to the water column. The turbidity observed there is thus not sulphide oxidising bacteria.